当前目标跟踪算法大体可分为以下七种 :

1.质心跟踪算法(Centroid):这种跟踪方式用于跟踪有界目标如飞机,目标完全包含在摄像机的视场范围内,对于这种跟踪方式可选用一些预处理算法:如白热(正对比度)增强、黑热(负对比度)增强,和基于直方图的统计(双极性)增强。

2.多目标跟踪算法(MTT):多目标跟踪用于有界目标如飞机、地面汽车等。它们完全在跟踪窗口内。在复杂环境里的小目标跟踪MMT能给出一个较好的性能

3.相关跟踪算法(Correlation):相关可用来跟踪多种类型的目标,当跟踪目标无边界且动态不是很强时这种方式非常有效。典型应用于:目标在近距离的范围,且目标扩展到摄像机视场范围外,如一艘船。

4.边缘跟踪算法(Edge):当跟踪目标有一个或多个确定的边缘而同时却又具有不确定的边缘,这时边缘跟踪是最有效的算法。典型地火箭发射,它有确定好的前边缘,但尾边缘由于喷气而不定

5.相位相关跟踪算法(Phase Correlation):相位相关算法是非常通用的算法,既可以用来跟踪无界目标也可以用来跟踪有界目标。在复杂环境下(如地面的汽车)能给出一个好的效果。

6.场景锁定算法(SceneLock):该算法专门用于复杂场景的跟踪。适合于空对地和地对地场景。这个算法跟踪场景中的多个目标,然后依据每个点的运动,从而估计整个场景全局运动,场景中的目标和定位是自动选择的。当存在跟踪点移动到摄像机视场外时,新的跟踪点能自动被标识。瞄准点初始化到场景中的某个点,跟踪启动,同时定位瞄准线。在这种模式下,能连续跟踪和报告场景里的目标的位置 。

7.组合(Combined)跟踪算法:顾名思义这种跟踪方式是两种具有互补特性的跟踪算法的组合:相关类算法+质心类算法。它适合于目标尺寸、表面、特征改变很大的场景(如小船在波涛汹涌的大海里行驶)。

results matching ""

    No results matching ""